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In Sub-Saharan Africa rapid urban growth combined with rising poverty is creating diverse urban environments,
the nature of which are not adequately captured by a simple urban-rural dichotomy. This paper proposes an al-
ternative classification scheme for urban mapping based on a gradient approach for the southern portion of the
West African country of Ghana. Landsat Enhanced ThematicMapper Plus (ETM+) and European Remote Sensing
Satellite-2 (ERS-2) synthetic aperture radar (SAR) imagery are used to generate a pattern based definition of the
urban context. Spectralmixture analysis (SMA) is used to classify a Landsat scene into Built, Vegetation andOther
land covers. Landscape metrics are estimated for Built and Vegetation land covers for a 450 m uniform grid cov-
ering the study area. A measure of texture is extracted from the SAR imagery and classified as Built/Non-built.
SMA based measures of Built and Vegetation fragmentation are combined with SAR texture based Built/Non-
built maps through a decision tree classifier to generate a nine class urban context map capturing the transition
from unsettled land at one end of the gradient to the compact urban core at the other end. Training and testing of
the decision tree classifier was done using very high spatial resolution reference imagery from Google Earth. An
overall classification agreement of 77%was determined for the nine-class urban contextmap, with user's accura-
cy (commission errors) being lower than producer's accuracy (omission errors). Nine urban contexts were clas-
sified and then compared with data from the 2000 Census of Ghana. Results suggest that the urban classes
appropriately differentiate areas along the urban gradient.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

In the coming decades most of the world's land cover and land use
change (LCLUC) is predicted to take place in the tropics, where popula-
tion is growing the fastest (DeFries, Asner & Foley, 2006). United Na-
tions' projections estimate that virtually all of the world's population
between now and the middle of this century will emerge in the cities
of the developing world, (United Nations Population Division 2012)
driven by natural increase in both urban and rural areas, and by contin-
ued migration from rural to urban areas as people search for economic
opportunities (Lee 2007). Urbanization is shaping landscapes in and
around cities through densification and sprawl, while at the same
time increased interaction among cities is creating new hybrid land-
scapes where rural and urban livelihoods overlap (Lambin, Turner,
Geist, Agbola, Angelsen, Bruce, Coomes, Dirzo, Fischer & Folke, 2001;
Seto, Reenberg, Boone, Fragkias, Haase, Langanke, Marcotullio,
Munroe, Olah & Simon, 2012). The rapid pace of recent urbanization is
reshaping the morphology and function of cities around the world
(Longley 2002), and while research has found that urban growth and
the demand for land conversion has been driving habitat fragmentation

(Wickham, O'Neill & Jones, 2000), little is known about how the urban
landscape itself is changing as cities grow (Liu & Herold 2007; Seto &
Shepherd 2009). Urban environments are becoming increasingly di-
verse and a simple urban-rural dichotomy fails to capture that diversity
(Champion & Hugo 2004).

Urban mapping increasingly relies on the use of satellite imagery
through the development of objective, automated and replicable meth-
odologies for the identification of human-induced land covers (Pumain
2004).The physical characteristics of urban places generate spatial and
spectral signatures that are readily captured in remotely sensed data
(Elvidge, Sutton, Wagner, Ryzner, Vogelmann, Goetz, Smith, Jantz,
Seto & Imhoff, 2004). As a result, detection and monitoring of the
urban environment at global, regional and local scales depends more
and more on the use of such data (Potere, Schneider, Angel & Civco,
2009; Small 2005; Lu &Weng 2006). In developing countries, where ur-
banization is taking place at the fastest rates (United Nations Population
Division, 2014), the geographic comprehensiveness of satellite imagery
hasmade it a useful tool for quantifying andmonitoring the distribution
and growth of human settlements (Harris & Longley 2002; Weeks
2004). The Landsat ThematicMapper (TM), Enhanced ThematicMapper
Plus (ETM+) and Operational Land Imager (OLI) satellite systems pro-
vide an extensive and accessible archive of moderate spatial resolution
(~30 m) imagery that has been successfully used to monitor urban
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areas and settlements in a wide range of environments (Small 2005;
Seto & Fragkias 2005; Lu & Weng 2006). In equatorial and tropical re-
gions where cloud cover is a common problem for optical remote sens-
ing, radar imagery is an alternative data source (Rogan, Miller, Stow,
Franklin, Levien & Fischer, 2003) that has successfully been used for
human settlement detection (Stasolla & Gamba 2008) and for urban
mapping (Haack & Bechdol 2000).While measures of texture extracted
from the Synthetic Aperture Radar (SAR) imagery have been found to
improve land cover and land use mapping (Herold, Haack & Solomon,
2004), detect building density (Dell'Acqua &Gamba2003) and differen-
tiate informal from formal settlements (Dell'Acqua, Stasolla & Gamba,
2006), applications that combine radar and optical imagery have
shown to successfully detect human settlements (Haack, Solomon,
Bechdol & Herold, 2002; Tatem, Noor & Hay, 2004).

Definitions of settlements as urban are generally based on an arbi-
trary threshold set as the split between rural and urban places without
accounting for differences in land use intensity, function or heterogene-
ity (Seto et al., 2012). However, in urban environments different types
and densities of buildings and built surface materials, as well as vegeta-
tion, can vary within short distances (Cadenasso et al., 2007). Rising
suburbanization trends are forming edge cities that are increasingly fa-
cilitating urban spread into rural areas (Zipperer et al., 2000) and blur-
ring the distinctions between rural and urban places (Hugo, Champion
& Lattes, 2003). The diffuse transition between urban centers and the
countryside is described by Antrop (2004) as a complex combination
of land uses with diverse and fragmented morphology. This heteroge-
neous transition zone that extends between urban and rural places re-
quires further identification and classification.

Although most research on urban spaces continues to use a simple
urban-rural dichotomy, there have been attempts to characterize
urban environments through gradient approaches based on measures
of landscape fragmentation. Research on urban ecosystems has focused
on examining the interaction between habitat fragmentation and eco-
logical function (Breuste, Niemelä & Snep, 2008; Kühn & Klotz 2006).
Measures of landscape fragmentation have also been used in studies
of spatial patterns of urban form (Yang & Qian, 2011; Van de Voorde,
Jacquet & Canters, 2011) and growth (Luck & Wu 2002; Weng 2007).
Research in the fields of landscape ecology and population have pro-
posed the use of continuous measures of degree of urbanization that
combine proportions of land cover with population characteristics
(McDonnell & Hahs 2008; Weeks, Larson & Rashed, 2003), and mea-
sures of landscape pattern with socio-economic indicators (Toit &
Cilliers 2011; Weeks, Larson & Fugate, 2005). These studies that inte-
grate data collected in censuses or surveys with imagery derived data
have two disadvantages: (a) an urban gradient cannot be calculated in
the absence of those socioeconomic data; and (b) since its definition de-
pends upon such data, an urban gradient cannot –without becoming
tautological- be used directly to predict a population's socioeconomic
characteristics. The objective of this study is to develop and test a pat-
tern-based classification scheme for the urban context, using an gradi-
ent approach based solely on remotely sensed imagery that exploits
quantitative measures of spatial patterns of built and vegetation land
cover for the purpose of advancing population and health studies. This
pattern-based definition of the urban context allows differentiating a
range of urban environments deepening the understanding of spaces
defined as place of residence in demographic and public health studies.
Data and the applications context are drawn from a study area in south-
ern Ghana.

2. Study area and methodology

2.1. Study area and period

Urbanization in Ghana is spreading at a faster pace than amongmost
of its West African neighbors. The 2010 Census of Population and Hous-
ing revealed that more than half of the country's population resided in

urban areas, a figure that the UN projects to reach three quarters by
2050. Ghana Statistical Service (GSS) estimates that population in the
Greater Accra Metropolitan Area increased from under 1.5 million in
1984 to almost 3 million in 2000, and then to the 4 million mark in
2010. However, urbanization is taking place not only in the capital
(Accra) and other major cities (especially Kumasi), but also in smaller
settlements both close to and far away from cities (Moller-Jensen &
Knudsen 2008).

Studies of land cover and land use change in Ghana have found that
migration is linked to decreasing woodlands in northern Ghana (Pabi
2007; Braimoh 2004), that in theWestern region themost predominant
changes are linked to mining, farming, lumbering, fuel wood collection
and urbanization (Kusimi 2008), and that in the Accra region urbaniza-
tion is the major driver of landscape transformation (Yorke & Margai
2007). In the capital city of Accra, urban expansion was mapped be-
tween 1985 and 2002 with Landsat imagery, showing a fast and un-
planned spread of the city into its hinterland (Møller-Jensen &
Yankson 1994; Møller-Jensen, Kofie and Yankson, 2005). Yeboah
(2003) describes the emergence of higher-quality residential sprawl
in the peri-urban and rural localities adjacent to Accra's metropolitan
area.

The study area fromwhich data are drawn for this analysis is located
in southern Ghana, consisting of 18 districts, including all of the Greater
Accra Region (which comprised 5 districts in 2000) and 13 adjacent dis-
tricts in the Central, Eastern and Volta regions shown in Fig. 1.The coast-
al regions of Ghana have seen a steady increase in population growth as
the capital city Accra attracts a steady flow of migrants in search for op-
portunities. Accra's metropolitan area alone saw its population double
between the mid-1980s and the beginning of 2000, when the last cen-
sus took place. The study period for this research is the early part of
the decade starting in 2000. The study area includes Accra and Tema,
and their metropolitan fringes, periphery and hinterland. The districts
selected for this study stretch over portions of Accra's neighboring re-
gions defined here as areas that will likely be influenced by urban
sprawl and other effects from changes in Accra in the near future. It is
composed of a diverse landscape ranging from purely rural to central
city (i.e., core) urban.

The year 2000 was selected as the study period to coincide with the
Ghanaian population and housing census which permitted drawing
comparisons between the landscape pattern based definition of the
urban context and a range of demographic variables. All the analyzed
and classified imagery was selected to match as closely as possible to
2000 time frame as was all the very high spatial resolution imagery
used as reference data.

2.2. Methods

Urban context is characterized here using a uniform grid covering
the study area through the use of satellite imagery and geographic infor-
mation system (GIS) techniques. Landsat ETM+ imagery was analyzed
through spectral mixture analysis (SMA) and classified into Built and
Vegetation land covers. Synthetic aperture radar imagery from the
ERS-2 satellite was used to estimate a measure of radar backscatter tex-
ture and classified into a Built/Non Built land cover map. Landscape
metrics are estimated for the SMA based Built and Vegetation land
covers and combined with the radar texture based Built/Non Built
map through a decision tree classifier in order to generate a classifica-
tion of degree of urbanization (Fig. 2).

2.2.1. Landsat imagery and processing
A cloud-free 30m spatial resolution Landsat ETM+terrain corrected

image captured for path 193 and row 56 on 26 December 2002 was se-
lected–the only cloud-free ETM+ image captured within the period
1999–2003. Pre-processing of the image consisted of masking
waterbodies, sand flats and fire scars to minimize the confusion of
land cover classes. Spectral mixture analysis (SMA) was applied to the
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masked ETM+ image to estimate sub-pixel fractions of endmembers
and the derived fraction images were used to generate a map of Built
and land cover based on a hard (majority) classification.

The pre-processing of the Landsat ETM+ scene included applying
waterbodies, sandbars and fire-scar masks. The waterbodies mask was
extracted from a LandUse land CoverMap for 2000 digitized on Landsat
Imagery by the Center for Remote Sensing and Geographic Information
(CERSGIS) of the University of Ghana, Legon. The CERSGIS waterbodies
layer included reservoirs, dams and rivers. In addition to the CERSGIS
waterbodies layer an unsupervised classification was used to incorpo-
rate smaller lagoons and reservoirs that had been missed by the land
use land cover map. The resulting improved waterbodies layer was
manually edited to include salt ponds andwetlands by digitizing direct-
ly on the Landsat ETM+ scene and corroborating visually with Google
Earth imagery. The Google Earth Imagery used to verify added water
features include pansharpened Landsat (15 m), Spot 5 (2.5 m) and
DigitalGlobe QuickBird 2 (65 cm) that correspond to the most current

available dates. Atmospheric correction was considered unnecessary
given that a single date Landsat image was classified based on signa-
tures derived from the same image (Song, Woodcock, Seto, Lenney &
Macomber, 2001).

Given the spectral similarity of bright sand bars and impervious sur-
faces, the decision was made to mask out sand flats in order to reduce
confusion between the two land cover classes. Bright sand flats were
digitized on Google Earth using the most current available very high
spatial resolution imagery which includes Pansharpened QuickBird 2,
Spot 5. We assumed that sand flats are unlikely to have converted
from built or vegetated land cover, which led us to decide to use the
most current very high spatial resolution imagery available. A fire scar
mask was also created to remove areas of savanna vegetation burned
immediately prior to the image acquisition date, to avoid confusion
with the dark (shade) endmember. The fire scar mask was created
using a supervised classification of a principal components transformed
image (Hudak & Brockett 2004).

Fig. 1. Study area depicted in redwithin Ghana (gray) and the Gulf of Guinea in blue. Polygonswithin the study area represent census districts, while in the rest of Ghana represent regions
(states).

252 M. Benza et al. / Remote Sensing of Environment 183 (2016) 250–264



The resulting masked image of digital number (DN) values for six
(all multispectral except thermal infrared) wavebands was analyzed
using spectral mixture analysis (SMA). SMA extracts sub-pixel informa-
tion by assuming that the spectral reflectance of a pixel is the product of
the linear combination of the spectra of pure components or
endmembers (Lu & Weng, 2008). Even though SMA was originally de-
veloped to classify natural environments (Adams, Smith & Gillespie,
1993; Roberts, Gardner, Church, Ustin, Scheer & Green, 1998), the tech-
niquewas adapted to urban landscapes by Ridd (1995) to represent the
land cover of Salt Lake City as a combination of vegetation, impervious
surface and soil (VIS). The pixel un-mixing algorithm constrains the
resulting fractions to sum to 1 for each pixel while each individual frac-
tion is non-negative (Phinn, Stanford, Scarth, Murray & Shyy, 2002), as
is described in the following equation:

Riλ ¼
XM

m¼1
f mirmλ þ εiλ and

XM

m¼1
f mi ¼ 1; f mi ≥0 ð1Þ

where spectral mixture Riλ is modeled at location i as the sum of the
fractions fmi of M image end-members rmλ plus a residual εiλat
waveband λ. In addition to estimating fractions for each end-member
the model generates a root-mean-square error (RMS) image that as-
sesses the model fit as described in the following equation:

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
XN

1
εiλð Þ2

N−1

s

ð2Þ

where N is the number of bands and εiλ is a residual term calculated for
all pixels at waveband λ.

The accuracy of the proportions generated by SMA depends on the
selection of spectral end-members used to represent pure classes in
the un-mixing process. End-member spectra collected directly from
the imagery were supported by a pixel purity index (PPI) (Phinn et al.
2002; Rashed, Weeks, Roberts, Rogan & Powell, 2003) which ranks
pixel values based on how often they are repeated in the extremes of
the spectral distribution of the image (Boardman, Kruse & Green,
1995). Candidate pixels were visually inspected on the pan-sharpened
(15m) scene and on very high spatial resolution satellite images inGoo-
gle Earth (Pansharpened QuickBird 2 (0.7 m). Given the lack of very
high spatial resolution imagery matching the date of the Landsat
ETM+ scene (only 2% of the study area), the decision was made to ex-
pand the time frame for the reference imagery to cover 1998 to 2004
(27% of the study area) (Fig. 3).

SMA models were run on different sets of candidate end-members
and the resulting fractions and RMS images were evaluated for good-
ness of fit. Models producing fractions between 0 and 1 and maximum
RMS error under a threshold were considered good models. Models
that didn't fit those parameters had their end-member refined in an it-
erative process until the optimum set of end-members was identified.
The final end-member selection consisted of five pure signatures, one
for green vegetation (pixels selected from forested areas), non-photo-
synthetic vegetation (pixels selected from savannah areas), soil (pixels
selected frompatches of bare soil or dirt), impervious surface (pixels se-
lected from built patches) and shade (pixels selected from areas in the
shadows of ridges) (Fig. 4).

The resulting Landsat-derived SMA fractionswere input to a series of
discrete threshold classifiers to identify and map Vegetation and Built
land cover classes. ETM+pixelswithmore than50% impervious surface
were classified as Built land cover. The land cover proportions resulting
from the SMA showed that within urban areas shade played an impor-
tant role in capturing building shadows and dark pavement. In order to
capture shadows and dark pavement cover, contextual informationwas
used to enhance a threshold classifier. Large settlements were delineat-
ed through visual inspection of the pan-sharpened (15 m) Landsat
ETM+ image, and pixels found within those areas with proportions of
over 50% shade and 25% impervious surfaces were also classified as
Built. Pixels modeled as having more than 50% vegetation were classi-
fied as Vegetation cover. Results from the SMA confirm previous re-
search identifying that shade is also largely associated with vegetated
areas where trees cast and contain substantial amounts of shade (Lu,
Moran & Batistella, 2003). A normalized difference vegetation index
(NDVI) was calculated from ETM+ wavebands 3 and 4, and compared
to the proportions of vegetation and shade produced by the SMA,

Fig. 2. Flow chart for urban context classification based on the combination of Landsat
2000 imagery and ERS-2 2000 imagery.

Fig. 3. Extent of the study area delineatedwith a red boundary onGoogle Earth and extent
of the very high spatial resolution imagery available on Google Earth in the 1998 to 2004
time period. 27% of the study area is covered by very high spatial resolution imagery in the
1998–2004 time period.
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confirming the overlap of vegetation and shade inmore heavily vegetat-
ed areas. In order to capture the portion of shade found within the veg-
etation cover, pixels with more than 50% shade and 25% vegetation
cover were also classified as Vegetation. The resulting classification
product is a 30 m raster land cover map of the study area containing
Built, Vegetation and Other land cover classes.

2.2.2. SAR imagery and processing
While optical sensors are limited by lack of transmission of short to

medium wavelength electromagnetic energy through clouds and pre-
cipitation, synthetic aperture radar (SAR) sensors are capable of trans-
mitting and receiving microwave energy that is sensitive to physical
characteristics of land surfaces such as roughness, morphology and ge-
ometry in most atmospheric conditions (Soergel 2010). Applications
of SAR imagery for urban and built area mapping have proven to be
very effective, given the high return characteristic of man-made fea-
tures (Haack & Bechdol 2000).

ERS-2 radar imagery collected in the C band (5.6 cm) with 12.5 m
spatial resolution was acquired for the study area from the European
Space Agency for three orbits: 18,370 collected on October 25 1998;
19,601 collected on January 19 1999; and 41,373 collected on March
20 2003. Pre-processing and processing of the radar imagery was con-
ducted for each orbital pass separately. Pre-processing involved apply-
ing a terrain correction algorithm and a speckle reduction filter while
the processing included the estimation of a measure of texture that is
then classified as Built or Non-Built land cover.

Ground range images were pre-processed using the NEST toolbox
developed by the European Space Agency (Engdahl, Minchella,
Marinkovic, Veci & Lu, 2012). A range Doppler terrain correction algo-
rithm was implemented for terrain correction and radiometric normal-
ization, using a 30 m spatial resolution Global Digital Elevation Model
(GDEM V2) derived from the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) satellite sensor and precise orbit
files from the Delft Institute for Earth-Oriented Space Research. In addi-
tion, a SAR simulation for orthorectification was used to generate a lay-
over mask. Adaptive filters are commonly used for speckle reduction in

radar imagery because they have the capacity to reduce multiplicative
noise (Lee, Jurkevich, Dewaele, Wambacq & Oosterlinck, 1994). A re-
fined Lee filter was used to reduce speckle noise generated by the inter-
ference of individual scatterers by examining variance in a 7 × 7
window and establishing a threshold that detects edges, (Lee, Wen,
Ainsworth, Chen & Chen, 2009). The terrain-corrected SAR image and
layovermaskwere closely inspected against very high spatial resolution
imagery on Google Earth and the DEM in order to verify that areas sus-
ceptible to terrain distortion were masked from subsequent processing.
Research in settlementmapping has shown that radar imagery is partic-
ularly useful in areaswith little terrainwhere background classes can be
defined as flat undeveloped surfaces with low radar returns against
which artificial structures with high returns easily stand up (Haack &
Slonecker 1994). Through visual inspection, areas located at higher ele-
vations were identified as irregular bare rock formations generating
mixed returns and foreshortening distortions which appeared to be
missed by the terrain correction and layovermask. After close examina-
tion of the radar backscatter against optical imagery, the decision was
made to expand the layover mask in areas located above 200 m eleva-
tion using a 200 m buffer to remove any remaining foreshortening dis-
tortions. The expanded mask helps to ensure that the radar backscatter
captured by the sensor is only minimally influenced by the radar beam
interacting with the terrain, and is largely a product of its interaction
with man-made structures. Finally, the same waterbodies mask used
for the Landsat scene was used to mask all water features, salt ponds
and wetlands.

Researchers exploit the ability of radar imagery to detect structures
and forms through the use ofmeasures of texture. The use of texture ex-
tracted from radar imagery allows for the delineation of features and
has been found to improve image classification of land cover and land
use (Herold et al. 2004; Dell'Acqua & Gamba 2003, Dell'Acqua et al.
2006). Several measures of texturewere tested on the filtered radar im-
agery and a 9 × 9 windowwas selected to estimate the standard devia-
tion of the radar backscatter values within the moving window. The
selection of the 9 × 9 pixels movingwindowwas based on the assump-
tion that an area of 112.5mby112.5m roughly correspond to the size of

Fig. 4. DN values for endmembers selected using the pixel purity index for band 3 (red) vs band 4 (near infrared). Selected 5 end-members include Impervious surfaces, Non-
photosynthetic vegetation, Shade, Soil and Vegetation.
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a city block that would identify a significant cluster of buildings. The
standard deviation texture image was then smoothed using a
3 × 3 pixel moving window in order to remove outliers. The resulting
variance of radar backscatter was used as an indicator of spatial compo-
sition of the built environment, where heterogeneous returns are asso-
ciated with complex artificial landscapes such as the man-made
features characteristic of settlements. A GIS layer depicting settlement
locations from Ghana Statistical Service was used in combination with
very high spatial resolution imagery from Google Earth as reference to
establish a threshold in the radar texture that maximizes the detection
of populated areas. The three orbits processed independently were clas-
sified as Built/Non-built land covers based on the defined threshold of
radar texture and then mosaicked into a single raster file covering the
entire study area.

2.2.3. Landscape metrics of built and vegetation patches
Researchers studying urban form have found that landscapemetrics

ofmulti-class land cover land usemaps derived from classified remotely
sensed imagery efficiently portray the complexity of cities (Herold et al.
2002; Luck & Wu 2002; Pesaresi & Bianchin 2003; Herold et al. 2003)
and of smaller rural settlements (Wang&Caldas 2014). Studies focusing
on capturing the morphological transition between urban and rural
places have shown that patch density, mean patch size and patch size
variability describe best how fragmented, dispersed and heterogeneous
the built environment is (Luck & Wu 2002; Herold et al. 2003; Seto &
Fragkias 2005).

To study urban structure with landscape metrics requires
partitioning the city into homogenous units of analysis (Herold et al.
2005). This study uses a uniform grid cell approach to estimate land-
scape fragmentation throughout the study area. Six different cell sizes
were tested, ranging from 450 m by 450 m to 14,400 m by 14,400 m.
Our analysis of the resulting landscapemetrics indicated that the small-
er cells maximized the detection of heterogeneous landscape patterns.
We concluded that cell sizes larger than 450 m by 450 m denigrated
our ability to derive meaningful distinctions among the resulting clas-
ses, especially given the spatial resolution of the imagery available to us.

Class and landscapemetrics were estimated for the SMA-based Built
and Vegetation land cover classes for the 450mgrid that corresponds to
a 15 by 15 pixel cell which is defined as the landscape unit of analysis.
The degree of landscape fragmentation, dispersal and complexity was
studied by examining spatial patterns of Built and Vegetation patches
within the 450 m cell along the urban transition.

The metrics were calculated using FRAGSTATS software (McGarigal &
Marks 1995). Class metrics for the Built and Vegetation land cover classes
included percent land cover, patch density, coefficient of variation of
patch area and areaweightedmean fractal dimension of patches. The het-
erogeneity of the patterns of Built and Vegetation land cover within each
450 m cell was quantified using percentage of land cover and density of
patches for each land cover class according to the following equation:

PatchDensity ¼
ni

A
10000ð Þ ð3Þ

where niis the number of patches of class i and A is the total area in m2,
which is then converted into density per 100 ha.

The variability in patch sizes for the Built and Vegetation land covers
was estimated for each 450m cellwith a coefficient of variation of patch
area with the following equation:

Patchsizecoefficientofvariation ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
aij−

Xn

j¼1
aij

" #h i2

ni

vuut

Xn

j¼1
aij

ni

ð4Þ

where aijis the area of patch ij of class i and ni is the number of patches.

The complexity of the shapes of urban patcheswas assessed through
estimates of area-weighted mean patch fractal dimension, which have
shown to help differentiate between compact dense urban areas and
the patchy urban fringe (Batty & Longley 1988; Mesev, Longley, Batty
& Xie, 1995). Area weighted mean fractal dimension was estimated
for Built and Vegetation patches within each 450 m cell according to
the following equation:

AreaweightedmeanFractaldimension ¼
Xm

i¼1

Xn

j¼1

2 ln 0:25pij
" #

lnaij

0

@

1

A aij
TA

$ %
ð5Þ

where aijis the area of patch ij (class i), pijis the perimeter ofm number
of classes (patch types) and TA is the total area.

In addition, an index of contagion was used to evaluate adjacency
and compactness in the landscape, describing the spatial arrangement
of different land covers within the landscape unit (Yeh & Huang 2009;
Herold et al. 2003; Dietzel, Herold, Hemphill & Clarke, 2005).

ContagionIndex

¼ 1þ

Xm

i¼1

Xm

k¼1
pi

gikXm

k¼1
gik

0

@

1

A ln pið Þ gikð ÞXm

k¼1
gik

2

4

3

5

2 ln mð Þ

2

6666664

3

7777775
ð6Þ

where piis the proportion of the landscape that is occupied by patch
type (class) i, gik is the number of adjacencies (joins) between pixels
of patch types i and k based on the double count method and m is the
number of patch types present in the landscape.

2.2.4. Defining the urban context
The fusion of optical and radar based land cover products provides

an opportunity to improve the accuracy of the land cover classification
obtained from individual sensors. The radar imagery was particularly
useful to detect small settlements that were missed by the SMA-based
approach on the optical imagery. A scheme is proposed todescribe land-
scape patterns of the built and vegetation land covers that combines
measures of landscape fragmentation extracted from the classification
of optical imagery with a measure variability of the built class extracted
from radar imagery. A nine-class scheme was created to describe in a
rank-order categorical manner the continuous transition of the urban
context. The scheme represents an urban gradient defined as: Compact
urban core, Fragmented large urban patches, Dense and dispersed small
urban patches, Fragmented sub-urban, Scattered settlements, Sparsely
populated, Fragmented transition, Fragmented unsettled and Unsettled
land (Fig. 5).

The conceptualization of the nine class scheme is the product of the
combination of measures of land cover fragmentation (SMA-based clas-
sification) with a measure of variability of the radar-based Built class
through a series of rules. The rules were defined a priori by analyzing
the frequency distributions of sixmeasures of land cover fragmentation
and the standard deviation of the radar-based Built variable, splitting
each variable in two (high and low values) using a natural breaks clas-
sification scheme that minimizes within-class variance and maximizes
between-class variance. The natural break split for each variable was
used to define a series of consecutive rules where the resulting classes
(Fig. 6) were named and validated by examining a set of representative
cells for each class against very high spatial resolution imagery on Goo-
gle Earth.

Decision tree classifiers are non-parametric models that deal effi-
ciently with numerical and categorical data, making them a suitable ap-
proach to classify urban context based on imagery extracted variables
such as land cover andmeasures of texture andmorphology fromdiffer-
ent data sources. A decision tree classifier was used to classify the 450m
cells or landscape units into one of nine urban context classes, using the
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measures of landscape fragmentation estimated on the SMA-based
classification of Built and Vegetation land covers and the aggregated
radar texture based Built cover. This classification technique takes
advantage of the spectral characteristics of the optical imagery, the
pattern characteristics of the landscape metrics, and the structural
characteristics of the radar imagery to generate a range of urban con-
text classes that describe the varying physical characteristics of the
landscape. Nine cell level measures of landscape fragmentation and
the cell level classified radar texture were used as inputs for the de-
cision tree classifier to generate the pattern based classification of
the urban context.

The VIS based Built land cover class was used to stratify the study
area into high percent Built, medium percent Built and low percent
Built, clipped to the section of the study area covered by very high
spatial resolution imagery on Google Earth between 1998 and
2004 and then overlaid to the 450 m uniform grid to draw a strati-
fied random sample of 690 cells for training and validating the deci-
sion tree. Given that built land represents a very small portion of the
study area, the more urban strata were oversampled in order to
select a minimum of 60 cells per class. The reference cells were vi-
sually inspected on very high spatial resolution Google Earth imag-
ery and assigned to one of the nine classes based on a series of rules
describing the predominant land cover type within the cell and
level of fragmentation of the land covers found within the cell
(Table 1).

The 690 cells were visually inspected and assigned to one of the nine
classes, and then were partitioned into training and testing samples for
a C5.0 boosted tree (10 trials) to model urban context based on land-
scape and texturemetrics. The boosted tree is an iterative process to im-
prove on the previous tree and reduce the number of errors. A random
sample of 349 of the reference cells were used to train the tree and the
remaining 344 were used to validate the tree. The breaks produced by
the boosted tree (Fig. 7) are based on the input variables for the refer-
ence data.

2.2.5. Accuracy assessment
Accuracy of the Built and Vegetation land covers classified from

Landsat-derived SMA fractions was assessed by comparing the land
cover classification to very high spatial resolution imagery from Google
Earth for the 2000–2004 timeframe for a random sample of 1000 points.
The sample size was increased until a minimum of 50 points was
reached for each of the classes (Congalton 1991). Accuracy of the
Built/Non-Built classification based on radar texture was assessed by
comparing it to very high spatial resolution imagery from Google
Earth for the same time frame for an independent random sample of
900 points. The sample sizewas increased until a minimum of 50 points
was reached for the Built class. Confusion matrices and overall agree-
ment statistics were estimated for each of the classifications.

Accuracy of the urban context classification was assessed by com-
paring the manually classified 450 by 450 m cells from the validation
portion of the reference data against classes predicted by the decision
tree for the same sample, a confusionmatrix and overall agreement sta-
tistics were calculated. The use of a confusion matrix identifies how
much misclassification is taking place for each one of the classes but
does not allow measuring the magnitude of the errors. Errors that
could be considered minor arise when a continuous scale is converted
into discrete categories and areas that are relatively similar are assigned
to two different but contiguous classes (Foody 2002). Given the gradi-
ent nature of the urban context classification scheme, confusion of adja-
cent classeswas expected to be substantial but not-problematic. A fuzzy
measure of accuracywas used to differentiateminor andmajormisclas-
sification errors in the urban context classification. An independent
stratified random sample of 375 cells was selected, oversampling the
most urban classes until a minimum of 30 cells was reached for each
class. Following a linguistic scale developed by Woodcock and Gopal
(2000), the predicted class for the sample of cells are evaluated in detail
against very high spatial resolution Google Earth imagery and scored on
a scale of 1 to 5, with 1meaning absolutely wrong and 5meaning abso-
lutely right (Table 2). Cells that are scored as 1 or 2 are consideredmajor

Fig. 5. Urban context classification scheme. On the most urban end compact and dense built land cover dominates, fragmentation increases in both built and vegetation land cover as
classes transition towards rural environments. On the most rural end of the scheme compact and dense vegetation land cover dominates.

Fig. 6. Rules used to define the 9 class urban context classification scheme. Six measures of landscape fragmentation were analyzed and combined with an aggregated measure of radar
texture to define the urban context classification scheme.
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errors while cells scored as 3 or 4 are considered minor errors and cells
scored 5 are considered accurately classified.

3. Results

3.1. SMA based vegetation and built land cover map

The land cover map produced using SMA is depicted in Fig. 8 a) and
shows that there is very little separation between Accra and Tema, the
two large and sprawling metropolitan areas that dominate the urban
system in the region. A network of smaller settlements, such as the
town of Agona Swedru (Fig. 8 b and c), can be observed spreading
east-west following the coastline and scattered mid-size towns extend
inland following major roads.

An examination of the confusion matrix (Table 3) for the SMA-de-
rived land cover map indicates a high overall agreement of 91%, with
producer's and user's accuracies for both the Built and Vegetation land
cover classes N80%. The producer's accuracy indicates the probability
that the reference pixels are accurately classified and represent a mea-
sure of omission errors while the user's accuracy indicates the probabil-
ity that the classified pixels represent the right category on the ground
and are a measure of commission error. The VIS-based Built class has a
15% omission error which indicates that the classification is successfully
detecting most of the built environment while a 19% commission error
points to a persistent level of confusion between the Built and Other
land cover class.

Results from the final SMA model suggest that distinguishing soil
and built land cover classes is challenging given the spectral similarity
of both classes, and also because of the high prevalence of mixing that
occurs in cities of the developing world where many of the streets re-
main unpaved (Ridd 1995; Powell & Roberts 2008), or where soil is de-
posited on paved street surfaces, especially as runoff after rainy periods.

3.2. SAR texture-based built class

The resulting confusion matrix (Table 4) demonstrates that while
themap of the Built class derived from SAR texture has a user's accuracy

Table 1
Urban context rules for classification of reference data in Google Earth.

Class Urban context class
name

Rules

1 Compact urban core More than 50% built, dense small buildings no
vegetation

2 Fragmented large urban
patches

More than 50% built, fragmented large buildings,
little vegetation

3 Dense and dispersed
urban patches

More than 50% built, fragmented small buildings,
fragmented vegetation

4 Fragmented suburban More than 25% built, fragmented buildings,
significant vegetation

5 Scattered settlements Less than 25% built, compact built and vegetation
6 Sparsely populated Less than 25% built, fragmented built and

vegetation
7 Fragmented transition Less than 10% built, fragmented built
8 Fragmented unsettled Less than 10% built, very little built
9 Unsettled land No built, mostly vegetation

Fig. 7. Schematic illustrating C5.0 boosted tree (10 trials) input, classification split values and output. The yellow boxes indicate the classified urban context classes.

Table 2
Fuzzy accuracy linguistic score.

Score Assessment of prediction

1 Absolutely wrong
2 Understandable but wrong
3 Reasonable answer
4 Good answer
5 Absolutely right
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of 67%, it has a much higher producer's accuracy of 94%. The low levels
of omission error indicate that the radar texture-based measure of the
built environment is successful at detecting the majority of manmade
features in the study area, while the high commission error indicates
that there is a fair amount of confusion between Built and Non-built
classes.

Close visual inspection of the SMA-and radar texture-based maps of
the Built land cover in conjunctionwith Google Earth imagery indicated

that the radar texture-derived map captures Built features for a wider
range of settlement sizes in the study area (Fig. 9). The small towns of
Kwame Adewe and Nsutapon on Fig. 9 b–d and e–g illustrate how the
radar-based map is able to detect small towns that are missed by the
SMA-based classification of the Built class. While the Built map extract-
ed fromSMA seems tohave a fair amount of omission, the radar texture-
extracted Built class, given its finer spatial resolution and imagingmode,
is capable of identifying much smaller towns.

Fig. 8. (a) Built (N50% impervious & N25% impervious+ N 50% shade) and Vegetation (N50% vegetation & N25% vegetation+ N 50% shade) land cover extracted from SMA; (b) Landsat
ETM+ false color infrared (bands 4–3–2) enlargement of the town of Agona Swedru (c) Built and Vegetation land cover extracted from SMA enlargement of the town of Agona Swedru.

Table 3
SMA based land cover classification confusion matrix.

Reference points n reference points User accuracy

Built Vegetation Other

Classified as Built 44 0 10 54 81
Vegetation 0 473 60 533 89
Other 8 9 396 413 96

n reference points 52 482 466 1000
Producer accuracy 85 98 85
Overall agreement 91
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3.3. Classification of the urban context

Landscape and class metrics estimated for the 450 m cells
(58,000 cells covering the study area) described in the Methods section

and a cell level standard deviation of the radar texture-based Built class
were used as input for the decision tree classifier. The resulting classifi-
cation combined the ten intermediate variables extracted from optical
and radar imagery into a nine class urban context classification that

Table 4
Radar-based Built/Non-built classification confusion matrix.

Reference points n reference points User accuracy

Built Non-built

Classified as Built 48 24 72 67
Non-built 3 825 828 100

n reference points 51 849 900
Producer accuracy 94 97
Overall agreement 97

Fig. 9. (a) Radar-derived Built map; (b) enlargement of radar-derived Built map near the town of Kwame Adewe; (c) enlargement of SMA-based land cover map of the town of Kwame
Adwene; (d) Google Earth image from the town of Kwame Adewene 2003; (e) Radar based built class zoom on the town of Nsutapon; (f) SMA based land cover classification zoom on the
town of Nsutapon; and (g) Google Earth image from the town of Nsutapon 2000.
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describes the spatial composition of land cover throughout the urban
transition.

The urban context classification map (Fig. 10) identifies almost 870
(1.5%) out of the 58,000 cells as Compact urban areas. These cells are lo-
cated mainly in Greater Accra and Tema, in the centers of cities such as
Koforidua and Winneba, and within major coastal and inland settle-
ments (Fig. 10). Cells classified as Fragmented large urban patches com-
pose 1.3% of the study area and are mostly located within the central
areas of major cities and settlements. A similar number of cells is iden-
tified as Dense and dispersed small urban patches and are found closer
to the outskirts of larger cities such as the area located between Accra
and Tema. The Fragmented sub-urban class is restricted to the outskirts
of large cities found almost entirely in coastal areas, where urbanization

is spreading at a fast pace. Scattered settlements covering 0.8% of the
study area, on the other hand, are spread around the periphery of inter-
mediate towns,most of them inland. Cells classified as sparsely populat-
ed areas cover 1295 cells (2.2%) and are scattered throughout the study
area extending beyond the peripheries of consolidated towns. Finally,
cells identified as transitional classes spread into unsettled land follow-
ing a band pattern that expands beyond the periphery of settled areas.

The confusion matrix (Table 5) indicates an overall agreement of
77%; it is evident that user's accuracy is lower than producer's accuracy.
The highest omission errors were found both on the least urban and
most urban classes in the Fragmented transition and Fragmented large
urban patches classes. High commission errors are found on the most
and least urban classes, as indicated by Fig. 10. The most urban of the

Fig. 10. 450 m cell urban context map. Accra, the capital city, and the port of Tema in the central coast are the two largest urban centers within the study area.

Table 5
Urban context classification confusion matrix.

Reference cells n reference cells User accuracy

1 2 3 4 5 6 7 8 9

Classified as 1 23 2 3 0 1 1 0 0 0 30 77
2 7 20 5 0 0 0 0 0 0 32 63
3 0 10 33 11 0 0 0 0 0 54 61
4 0 0 6 33 0 1 0 0 0 40 83
5 0 0 0 0 28 2 0 0 0 30 93
6 0 0 0 0 2 27 3 2 0 34 79
7 0 0 0 0 0 0 27 5 1 33 82
8 0 0 0 0 0 0 0 17 7 24 71
9 0 0 0 0 0 0 0 11 56 67 84

n class cells 30 32 47 44 31 31 30 35 64 344
Producer accuracy 77 63 70 75 90 87 90 49 88
Overall agreement 77

1: Compact urban.
2: Fragmented large urban patches.
3: Fragmented dense and dispersed urban patches.
4: Fragmented sub-urban.
5: Scattered settlements.
6:Sparsely populated.
7: Fragmented transition.
8: Fragmented unsettled.
9: Unsettled.
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context classes (e.g., Compact urban and Fragmented large urban
patches classes), exhibit a fair amount of confusion while the more
rural Fragmented unsettled land and Fragmented transition classes
show some confusion. The matrix and Fig. 11 indicate that while there
is some confusion between similar classes (i.e., adjacent classes in a
rank-order sense), the automated classification of urban context classes
shows close agreement with the reference data derived from the visual
interpretation of very high spatial resolution imagery.

Results from the fuzzy accuracy assessment indicate a high degree of
correspondence when using a score of agreement with the reference
data. The right class column on table 6 includes scores 1 to 3 corre-
sponding to “absolutely right,” “good answer” and “reasonable answer,”
while the exact class only captures score 1-absolutely right. The average
agreement between classification and reference data improved from
61% to 87% when using the right class over the exact class. Given the
continuous nature of the classification scheme, the use of a broader def-
inition of agreement appears to be an appropriate way of assessing ac-
curacy. The improvements in agreement levels through the use of the
fuzzy accuracy approach indicate that there is notable overlap between
adjacent classes, an artifact of the gradient approach.

4. Discussion and conclusions

Rapid urbanization is reshaping themorphology and function of cit-
ies globally. By portraying rural and urban areas as clearly distinct
spaces, dichotomous rural/urban classifications ignore the importance
of flows of people and products that connect these spaces and belie
how urban processes are remaking global landscapes far beyond
urban areas. In this paper, we have created and evaluated an urban con-
text classification scheme that attempts to characterize different urban

contexts that exist along a gradient between the arbitrary extremes of
urban and rural. We demonstrate a novel characterization of the
urban context based exclusively on the pattern characteristics of land
cover distributions. A series of landscape metrics were computed for
Built and Vegetated land cover maps with the goal of differentiating
areas based on the degree of landscape fragmentation.

Two intermediate and independent land cover classifications were
generated and then integrated, based on our analysis of optical and
radar imagery it is evident that each of the approaches has advantages
and limitations. The workflow for the processing of the optical imagery
estimates sub-pixel proportions of land cover and then classifies them
into discrete land cover classes in order to generate distinct land cover
patches that are further analyzed through landscape metrics. Even
though the classification of the Landsat-derived SMA fractions leads to
a significant loss of sub-pixel land cover detail, the categorical product
allows for the analysis of spatial patterns of land cover patches that
would not be possible to achievewithmore continuous spatial data. Re-
sults from the accuracy assessment for the SMA based classification of
land cover indicate that there is a fair amount of omission, meaning
that we are missing some built and vegetation patches, most likely be-
cause of their smaller proportions within the 30 m pixel. On the other
hand, the radar-based classification had higher commission errors,
meaning that there is at least some confusion between the Built and
Non-Built classes using just that method. By combining the SMA- and
radar-based land cover classes the attempt was made to overcome the
limitations of each independent classification and generate amore accu-
rate depiction of the built environment in the study area.

Patterns of land cover fragmentationwere estimated using a 15 pixel
by 15 pixel landscape unit to assess heterogeneity and complexity in
patch sizes, and dispersion and interspersion of the land cover. This

Fig. 11.Distribution of predicted versus reference classes. Commission error is present on both ends of the classification scheme. The dark red portion of the Fragmented large urban patches
bar indicates confusion with the Compact urban core class. The dark green portion of the Fragmented unsettled class bar indicates confusion with the Unsettled land class.

Table 6
Fuzzy accuracy.

Class Reference cells Right class % Right Exact class % Exact

1: Compact urban 30 19 63 11 37
2: Fragmented large urban patches 33 23 70 16 48
3: Fragmented dense and dispersed urban patches 37 32 86 18 49
4: Fragmented sub-urban 32 31 97 22 69
5: Scattered settlements 31 30 97 23 74
6: Sparsely populated 32 30 94 18 56
7: Fragmented transition 47 37 79 18 38
8: Fragmented unsettled 37 37 100 30 81
9: Unsettled 98 88 90 74 76

377 327 87 230 61
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analysis provides an in-depth portrayal of the spatial patterns of land
cover found within the study area. The generated urban context map
with a spatial resolution of 450 m does not identify individual objects
or land cover classes but it categorizes the landscape based on their spa-
tial patterns following a gradient approach. The assumption in our
method is that as city or settlement centers become more densely ur-
banized the built environment becomes more compact, whereas to-
wards the outskirts of the city the land cover conversion brought by
urban expansion means higher fragmentation and dispersion. The pat-
tern-based urban context definition is based on the relative fragmenta-
tion of both the built environment and the vegetation land cover. A
compact urban core bounds the most urbanized end of the spectrum,

with a predominant Built land cover class and very low levels of land-
scape fragmentation. As distance from the compact urban core in-
creases, the built environment becomes increasingly fragmented
giving way to dispersion and interspersion of Vegetation and Built
land covers.

At distances from the city center reaching beyond the city limits, the
landscape changes to scattered settlements and sparsely populated
areas; fragmentation of the built environment peaks and is gradually re-
placed by areas transitioning from their natural state into cleared spaces
suggestive of potential settlement. At the least urbanized end of the
spectrum, unsettled lands are identified by lower levels of fragmenta-
tion in the vegetation land cover, while in transitioning spaces we

Fig. 13. Population density throughout the urban context classification. Population density is highest on the most urban end the scheme and decreases as classes transition into the most
rural unsettled land.

Fig. 12. Percentworking in agriculture throughout theurban context classification. The highest percentage of populationworking in the agricultural sector is foundon themost rural end of
the scheme, Fragmented transition, fragmented unsettled and unsettled land.

262 M. Benza et al. / Remote Sensing of Environment 183 (2016) 250–264



begin to observe clearings linked to growing vegetation cover fragmen-
tation. The pattern-based definition of the urban context used in this
study captures awider range of urban environments than do traditional
rural/urban classifications. By differentiating the compact urban city
center from highly fragmented suburban areas and scattered settle-
ments, the urban context definition identifies important pattern differ-
ences among inhabited spaces. This study proposes defining urban
context based on characteristics of landscape fragmentation, an ap-
proach that is easily replicable in other data poor countries. At the
same time, it is important to recognize that the urban context classifica-
tion derived in this study is a relativemeasure of degree of urbanization
that is based on the fragmentation characteristics of this particular land-
scape. Its replicability in different geographic settings is a subject for fu-
ture research.

The pattern based scheme was developed solely on the basis of im-
agery; the test of its utility lies in its ability to differentiate socioeconom-
ic characteristics derived from independent sources. While a complete
test of its utility remains beyond the scope of this paper, the urban con-
text classificationwas compared to census data summarized at the enu-
meration area (EA) level (average size 13 km2). A random sample of
2000 EAs was selected from a total of 5000 covering the study area
andwas categorized based on the predominant urban context class cov-
ering each sampled EA (i.e. the class that covers themajority of the EA).
EA level measures of population density and percentage of population
occupied in agriculture were estimated and examined against the EA's
predominant urban context class. Results indicate that the highest per-
centages of population employed in agriculture are concentrated at the
most rural end of the spectrum for scattered settlements, sparsely pop-
ulated, fragmented transition, fragmented unsettled and unsettled land
(Fig. 12). It is interesting to note that the compact urban core has a
higher percentage of population employed in agriculture than the
fragmented sub-urban class, a result that would seem unlikely at first
sight. However it is also worth pointing out that even though the com-
pact urban core class captures the dense city center of Accra and Tema it
also captures dense and compact city centers of intermediate cities and
major towns. In those smaller cities the proportion of population work-
ing in agriculture ismuch higher than in sub-urban areaswhich are only
concentrated around Accra. On the other hand, population density is
highest in the most urban end of the spectrum for the compact urban
core, fragmented large urban patches, and dense and disperse small
urban patches classes and decreases significantly with the transition
into the unsettled end of the scheme (Fig. 13).

In our follow-on research, we are examining demographic trends
throughout the range of urban contexts, to see if they provide clues as
towherewe can expect urbanization to spread in the future. It is our ex-
pectation that any research uncovering a rural-urban differential in de-
mographic behavior or trendswill be better understoodwhen theurban
gradient is taken into account. Although our preliminary results confirm
that demographic patterns vary throughout the urban context, the pat-
tern-based definition of the urban context remains an arbitrary defini-
tion of space. There is no consensus on what constitutes an urban
place and that means that there will continue to be manyways of char-
acterizing urban spaces. This study proposes a definition of urban con-
text based on landscape fragmentation characteristics, an easily
replicable approach in data poor environments. At the same time, it is
important to recognize that the urban context classification derived in
this study is a relative measure of degree of urbanization that is based
on the fragmentation characteristics of this particular landscape.We en-
courage other researchers to test its replicability in different geographic
settings.

By examining landscape pattern characteristics, this study suggests
that urban mapping can be advanced beyond the traditional rural/
urban or land cover and land use classifications towards the detection
and inclusion of diverse urban environments. This study attempts to ex-
plain differences between rural and urban environments in developing
countries where the fast pace of urbanization is generating dynamic

landscapes. Further research is necessary to expand the understanding
of how the urban context is linked to demographic patterns and more
specifically to elucidate how emerging developing world urban envi-
ronments are connected to population growth.

Acknowledgments

This research was funded by grant number R01 HD054906 from the
Eunice Kennedy Shriver National Institute of Child Health and Human
Development and by National Aeronautic and Space Administration In-
terdisciplinary Research in Earth Science Program grant G00009708.
Wewould like to thank the European Space Agency for providing access
to ERS-2 SAR imagery.

References

Adams, J. B., Smith, M. O., & Gillespie, A. R. (1993). Imaging spectroscopy: Interpretation
based on spectral mixture analysis. Remote Geochemical Analysis Elemental and
Mineralogical Composition, 7, 145–166.

Antrop, M. (2004). Landscape change and the urbanization process in Europe. Landscape
and Urban Planning, 67, 9–26.

Batty, M., & Longley, P. A. (1988). The morphology of urban land use. Environment and
Planning B: Planning and Design, 15, 461–488.

Boardman, J. W., Kruse, F. A., & Green, R. O. (1995). Mapping target signatures via partial
unmixing of AVIRIS data. Citeseer, 95(1).

Braimoh, A. K. (2004). Seasonal migration and land use change in Ghana. Land
Degradation & Development, 15, 37–47.

Breuste, J., Niemelä, J., & Snep, R. (2008). Applying landscape ecological principles in
urban environments. Landscape Ecology, 23, 1139–1142.

Cadenasso, M. L., Pickett, S. T. A., & Schwarz, K. (2007). Spatial heterogeneity in urban eco-
systems: Reconceptualizing land cover and a framework for classification. Frontiers in
Ecology and the Environment, 5, 80–88.

Champion, A. G., & Hugo, G. (2004). New forms of urbanization: Beyond the urban-rural di-
chotomy. Ashgate Pub Ltd.

Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely
sensed data. Remote Sensing of Environment, 37, 35–46.

DeFries, R., Asner, G. P., & Foley, J. (2006). A glimpse out the window: What landscapes
reveal about livelihoods, land use, and environmental consequences. Environment,
48, 22–36.

Dell'Acqua, F., & Gamba, P. (2003). Texture-based characterization of urban environments
on satellite SAR images. Geoscience and Remote Sensing, IEEE Transactions on, 41,
153–159.

Dell'Acqua, F., Stasolla, M., & Gamba, P. (2006). Unstructured human settlement mapping
with SAR sensors. IEEE, 3619–3622.

Dietzel, C., Herold, M., Hemphill, J. J., & Clarke, K. C. (2005). Spatio-temporal dynamics in
California's Central Valley: Empirical links to urban theory. International Journal of
Geographical Information Science, 19, 175–195.

Elvidge, C. D., Sutton, P. C., Wagner, T. W., Ryzner, R., Vogelmann, J. E., Goetz, S. J., ... Imhoff,
M. L. (2004). Urbanization. Land Change Science, 315–328.

Engdahl, M., Minchella, A., Marinkovic, P., Veci, L., & Lu, J. (2012). Nest: An esa open source
toolbox for scientific exploitation of sar data. Geoscience and Remote Sensing Sympo-
sium (IGARSS), 2012 IEEE International (pp. 5322–5324) (IEEE).

Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote
Sensing of Environment, 80, 185–201.

Haack, B., & Bechdol, M. (2000). Integrating multisensor data and RADAR texture mea-
sures for land cover mapping. Computers & Geosciences, 26, 411–421.

Haack, B. N., & Slonecker, E. T. (1994). Merged spaceborne radar and thematic mapper
digital data for locating villages in Sudan. PE & RS- Photogrammetric Engineering &
Remote Sensing, 60, 1253–1257.

Haack, B. N., Solomon, E. K., Bechdol, M. A., & Herold, N. D. (2002). Radar and optical data
comparison/integration for urban delineation: A case study. Photogrammetric
Engineering and Remote Sensing, 68, 1289–1296.

Harris, R. J., & Longley, P. A. (2002). New data and approaches for urban analysis: Model-
ling residential densities. Transactions in GIS, 4, 217–234.

Herold, M., Scepan, J., & Clarke, K. C. (2002). The use of remote sensing and landscape
metrics to describe structures and changes in urban land uses. Environment &
Planning A, 34, 1443–1458.

Herold, M., Goldstein, N. C., & Clarke, K. C. (2003). The spatiotemporal form of urban
growth: Measurement, analysis and modeling. Remote Sensing of Environment, 86,
286–302.

Herold, N. D., Haack, B. N., & Solomon, E. (2004). An evaluation of radar texture for land
use/cover extraction in varied landscapes. International Journal of Applied Earth
Observation and Geoinformation, 5, 113–128.

Herold, M., Couclelis, H., & Clarke, K. C. (2005). The role of spatial metrics in the analysis
and modeling of urban land use change. Computers, Environment and Urban Systems,
29, 369–399.

Hudak, A. T., & Brockett, B. H. (2004). Mapping fire scars in a southern African savannah
using Landsat imagery. International Journal of Remote Sensing, 25, 3231–3243.

Hugo, G., Champion, A., & Lattes, A. (2003). Toward a new conceptualization of settle-
ments for demography. Population and Development Review, 29, 277–297.

263M. Benza et al. / Remote Sensing of Environment 183 (2016) 250–264

http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0005
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0005
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0005
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0010
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0010
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0015
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0015
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0020
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0020
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0025
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0025
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0030
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0030
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0035
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0035
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0035
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0040
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0040
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0045
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0045
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0050
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0050
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0050
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0055
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0055
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0055
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0060
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0060
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0065
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0065
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0065
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0070
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0075
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0075
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0075
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0080
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0080
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0085
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0085
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0090
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0090
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0090
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0095
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0095
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0095
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0100
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0100
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0105
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0105
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0105
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0110
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0110
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0110
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0115
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0115
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0115
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0120
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0120
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0120
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0125
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0125
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0130
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0130


Kühn, I., & Klotz, S. (2006). Urbanization and homogenization – Comparing the floras of
urban and rural areas in Germany. Biological Conservation, 127, 292–300.

Kusimi, J. M. (2008). Assessing land use and land cover change in theWassaWest District
of Ghana using remote sensing. GeoJournal, 71, 249–259.

Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., ... Folke, C.
(2001). The causes of land-use and land-cover change: Moving beyond the myths.
Global Environmental Change, 11, 261–269.

Lee, K. N. (2007). An urbanizing world. State of the world 2007: Our urban future
(pp. 3–22).

Lee, J. S., Jurkevich, L., Dewaele, P., Wambacq, P., & Oosterlinck, A. (1994). Speckle filtering
of synthetic aperture radar images: A review. Remote Sensing Reviews, 8, 313–340.

Lee, J. -S., Wen, J. -H., Ainsworth, T. L., Chen, K. -S., & Chen, A. J. (2009). Improved sigma
filter for speckle filtering of SAR imagery. Geoscience and Remote Sensing, IEEE
Transactions on, 47, 202–213.

Liu, X., & Herold, M. (2007). Of patterns and processes: Spatial metrics and geo-statistics
in urban analysis. In Integration of GIS and remote sensing, 93.

Longley, P. A. (2002). Geographical information systems: Will developments in urban re-
mote sensing and GIS lead to ‘better’ urban geography? Progress in Human Geography,
26, 231.

Lu, D., & Weng, Q. (2006). Use of impervious surface in urban land-use classification.
Remote Sensing of Environment, 102, 146–160.

Lu, D., & Weng, Q. (2008). Mapping urban impervious surfaces from medium and high
spatial resolution multispectral imagery. Remote sensing of impervious surfaces. Boca
Raton, FL, USA: CRC Press, Taylor & Francis Group.

Lu, D., Moran, E., & Batistella, M. (2003). Linearmixture model applied to Amazonian veg-
etation classification. Remote Sensing of Environment, 87, 456–469.

Luck, M., & Wu, J. (2002). A gradient analysis of urban landscape pattern: A case study
from the phoenix metropolitan region, Arizona, USA. Landscape Ecology, 17, 327–339.

McDonnell, M., & Hahs, A. (2008). The use of gradient analysis studies in advancing our
understanding of the ecology of urbanizing landscapes: Current status and future di-
rections. Landscape Ecology, 23, 1143–1155.

McGarigal, K., & Marks, M. (1995). Spatial pattern analysis program for quantifying land-
scape structure. Gen. Tech. Rep. PNW-GTR-351. US Department of Agriculture, Forest
Service, Pacific Northwest Research Station.

Mesev, T. V., Longley, P. A., Batty, M., & Xie, Y. (1995). Morphology from imagery: Detect-
ing and measuring the density of urban land use. Environment & Planning A, 27, 759.

Moller-Jensen, L., & Knudsen, M. (2008). Patterns of population change in Ghana (1984–
2000): Urbanization and frontier development. GeoJournal, 73, 307–320.

Møller-Jensen, L., & Yankson, P. (1994). Assessing the land cover change of Accra using
Landsat-TM data. Geografisk Tidsskrift-Danish Journal of Geography, 94, 21–25.

Møller-Jensen, L., Kofie, R. Y., & Yankson, P. W. (2005). Large-area urban growth
observations—A hierarchical kernel approach based on image texture. Geografisk
Tidsskrift-Danish Journal of Geography, 105, 39–47.

Pabi, O. (2007). Understanding land-use/cover change process for land and environmen-
tal resources use management policy in Ghana. GeoJournal, 68, 369–383.

Pesaresi, M., & Bianchin, A. (2003). Recognizing settlement structure using mathematical
morphology and image texture. In J. P. Donnay, M. J. Barnsley, & P. A. Longley (Eds.),
Remote sensing and urban analysis: GISDATA 9 (pp. 46–60). CRC Press.

Phinn, S., Stanford, M., Scarth, P., Murray, A. T., & Shyy, P. T. (2002). Monitoring the com-
position of urban environments based on the vegetation-impervious surface-soil
(VIS) model by subpixel analysis techniques. International Journal of Remote Sensing,
23, 4131–4153.

Potere, D., Schneider, A., Angel, S., & Civco, D. L. (2009). Mapping urban areas on a global
scale: Which of the eight maps now available is more accurate? International Journal
of Remote Sensing, 30, 6531–6558.

Powell, R. L., & Roberts, D. A. (2008). Characterizing variability of the urban physical en-
vironment for a suite of cities in Rondonia, Brazil. Earth Interactions, 12, 1–32.

Pumain, D. (2004). An evolutionary approach to settlement systems. New forms of urban-
ization: beyond the urban-rural dichotomy.

Rashed, T., Weeks, J. R., Roberts, D., Rogan, J., & Powell, R. (2003). Measuring the physical
composition of urban morphology using multiple endmember spectral mixture
models. Photogrammetric Engineering and Remote Sensing, 69, 1011–1020.

Ridd, M. K. (1995). Exploring a VIS (vegetation-impervious surface-soil) model for urban
ecosystem analysis through remote sensing: Comparative anatomy for cities†.
International Journal of Remote Sensing, 16, 2165–2185.

Roberts, D. A., Gardner, M., Church, R., Ustin, S., Scheer, G., & Green, R. O. (1998). Mapping
chaparral in the Santa Monica Mountains using multiple endmember spectral mix-
ture models. Remote Sensing of Environment, 65, 267–279.

Rogan, J., Miller, J., Stow, D., Franklin, J., Levien, L., & Fischer, C. (2003). Land-cover change
monitoring with classification trees using Landsat TM and ancillary data.
Photogrammetric Engineering and Remote Sensing, 69, 793–804.

Seto, K. C., & Fragkias, M. (2005). Quantifying spatiotemporal patterns of urban land-use
change in four cities of China with time series landscape metrics. Landscape Ecology,
20, 871–888.

Seto, K. C., & Shepherd, J. M. (2009). Global urban land-use trends and climate impacts.
Current Opinion in Environmental Sustainability, 1, 89–95.

Seto, K. C., Reenberg, A., Boone, C. G., Fragkias, M., Haase, D., Langanke, T., ... Simon, D.
(2012). Urban land teleconnections and sustainability. Proceedings of the National
Academy of Sciences. 109. (pp. 7687–7692).

Small, C. (2005). A global analysis of urban reflectance. International Journal of Remote
Sensing, 26, 661–681.

Soergel, U. (2010). Review of radar remote sensing on urban areas. In U. Soergel (Ed.),
Radar Remote Sensing of Urban Areas (pp. 1–47). Springer Netherlands.

Song, C.,Woodcock, C. E., Seto, K. C., Lenney,M. P., &Macomber, S. A. (2001). Classification
and change detection using Landsat TM data: When and how to correct atmospheric
effects? Remote Sensing of Environment, 75, 230–244.

Stasolla, M., & Gamba, P. (2008). Semi-automated extraction of human settlement extent in
HR SAR images.

Tatem, A. J., Noor, A. M., & Hay, S. I. (2004). Defining approaches to settlement mapping
for public health management in Kenya using medium spatial resolution satellite im-
agery. Remote Sensing of Environment, 93, 42–52.

Toit, M. J., & Cilliers, S. S. (2011). Aspects influencing the selection of representative ur-
banization measures to quantify urban–rural gradients. Landscape Ecology, 26,
169–181.

United Nations Population Division (2012).World population prospects: The 2012 revision.
New York: United Nations.

United Nations Population Division (2014).World urbanization prospects: The 2014 revi-
sion population database. United Nations Population Division.Department of Econom-
ic and Social Affairs.

Van de Voorde, T., Jacquet, W., & Canters, F. (2011). Mapping form and function in urban
areas: An approach based on urban metrics and continuous impervious surface data.
Landscape and Urban Planning, 102, 143–155.

Wang, C., & Caldas, M. M. (2014). Fragmentation patterns in land reform settlements in
the Brazilian Amazon. Society & Natural Resources, 27, 742–758.

Weeks, J. R. (2004). The role of spatial analysis in demographic research. Spatially integrat-
ed social science (pp. 381–399).

Weeks, J., Larson, D., & Rashed, T. (2003). Contrast or continuum? The creation and appli-
cation of an urban gradient index using remotely sensed imagery and GIS. Annual
meeting of the population association of America, Minneapolis (pp. 1–44).

Weeks, J. R., Larson, D., & Fugate, D. (2005). Patterns of urban land use as assessed by sat-
ellite imagery: An application to Cairo, Egypt. Population, Land Use, and Environment:
Research Directions (pp. 265–286).

Weng, Y. -C. (2007). Spatiotemporal changes of landscape pattern in response to urban-
ization. Landscape and Urban Planning, 81, 341–353.

Wickham, J. D., O'Neill, R. V., & Jones, K. B. (2000). Forest fragmentation as an economic
indicator. Landscape Ecology, 15, 171–179.

Woodcock, C. E., & Gopal, S. (2000). Fuzzy set theory and thematic maps: Accuracy assess-
ment and area estimation. International Journal of Geographical Information Science,
14, 153–172.

Yang, Q., Li, J., Gan, X., Zhang, J., Yang, F., & Qian, Y. (2011). Comparison of landscape pat-
terns betweenmetropolises and small-sized cities: A gradient analysis with changing
grain size in shanghai and Zhangjiagang, China. International Journal of Remote
Sensing, 33, 1446–1464.

Yeboah, I. E. A. (2003). Demographic and housing aspects of structural adjustment and
emerging urban form in Accra, Ghana. Africa Today, 50, 107–119.

Yeh, C. -T., & Huang, S. -L. (2009). Investigating spatiotemporal patterns of landscape di-
versity in response to urbanization. Landscape and Urban Planning, 93, 151–162.

Yorke, C., & Margai, F. R. (2007). Monitoring land use change in the Densu River basin,
Ghana using GIS and remote sensing methods. African Geographical Review, 26,
87–111.

Zipperer, W. C., Wu, J., Pouyat, R. V., & Pickett, S. T. A. (2000). The application of ecological
principles to urban and urbanizing landscapes. Ecological Applications, 10, 685–688.

264 M. Benza et al. / Remote Sensing of Environment 183 (2016) 250–264

http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0135
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0135
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0140
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0140
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0145
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0145
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0150
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0150
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0155
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0155
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0160
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0160
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0160
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0165
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0165
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0170
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0170
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0170
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0175
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0175
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0180
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0180
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0180
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0185
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0185
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0190
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0190
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0195
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0195
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0195
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0200
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0200
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0200
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0205
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0205
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0210
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0210
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0215
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0215
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0220
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0220
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0220
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0225
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0225
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0230
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0230
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0230
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0235
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0235
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0235
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0235
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0240
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0240
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0240
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0245
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0245
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0250
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0250
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0255
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0255
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0255
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0260
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0260
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0260
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0265
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0265
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0265
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0270
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0270
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0270
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0275
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0275
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0275
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0280
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0280
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0285
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0285
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0290
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0290
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0295
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0295
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0300
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0300
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0300
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0305
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0305
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0310
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0310
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0310
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0315
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0315
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0315
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0320
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0320
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0325
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0325
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0325
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0330
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0330
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0330
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0335
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0335
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0340
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0340
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0345
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0345
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0345
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0350
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0350
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0350
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0355
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0355
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0360
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0360
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0365
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0365
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0365
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0370
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0370
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0370
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0370
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0375
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0375
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0380
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0380
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0385
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0385
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0385
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0390
http://refhub.elsevier.com/S0034-4257(16)30250-4/rf0390

